Reductive Acylation of α -Keto Azides Derived from L-Amino Acids using N-Protected L-Aminothiocarboxylic S-Acids

M. Anthony McKervey,* Michael B. O'Sullivan, Peter L. Myers and Richard H. Green

- ^a School of Chemistry, The Queen's University, Belfast BT9 5AG, N. Ireland
- ^b Glaxo Group Research Ltd., Greenford Road, Greenford, Middlesex UB6 0HE, UK

Several homochiral *N*-protected α -aminothiocarboxylic *S*-acids have been synthesised from natural amino acids and used for reductive acylation of homochiral α, α' -amino keto azides, also derived from natural amino acids.

α-Aminothiocarboxylic S-acids derived from N-protected natural amino acids have been employed as reagents for peptide segment coupling¹ and in peptide backbone modification through thioamide bond formation (endothiopeptides).² We have devised a new use for N-protected aminothiocarboxylic S-acids which, by analogy with thioacetic S-acid, is based on their ability to engage in reductive acylation. It is known, for example, that thioacetic S-acid combines with benzyl azide to form N-benzylacetamide in high yield and that the process tolerates additional functionality such as alkene or methanesulfonate in the azide.³ We have prepared a series of N-protected aminothiocarboxylic S-acids and have studied their reactions with azides in order to assess their potential in reductive acylation, in particular of azides derived from natural amino acids [eqn. (1)].

Although *N*-protected aminothiocarboxylic *S*-acids are accessible from the corresponding *N*-hydroxysuccinimide esters^{1,2,4}, a convenient one-pot alternative consists of treating the *N*-protected amino acid in dichloromethane with 1,1'-carbonyldiimidazole at room temperature followed by exposure (via a bubbler) of the solution to gaseous hydrogen sulfide for ca. 1 h. This procedure proved successful for several *N*-protected thiocarboxylic *S*-acids some of which are shown in Table 1. The 13 C NMR spectrum of each compound displayed a signal at δ 199–200 diagnostic of the carbon atom of the COSH moiety.

Each thio S-acid was treated with benzyl azide to test its efficacy in reductive acylation. As a group the compounds were rather less reactive than thioacetic S-acid and about as reactive as thiopivalic S-acid. Treatment of benzyl azide with thio S-acid 1 (2 equiv.) in the minimum amount of benzene at 60–70 °C for 16 h under nitrogen furnished N-benzylamide 8, m.p. 162–163 °C, in 73% yield. Thio S-acids 2–7 produced the appropriate benzylamide in 73–85% yield when similarly treated. The major by-product in each case was a disulfide of general formula 9. That these reductive acylations proceeded

Table 1 Thio S-acids obtained from amino acids

Amino acid	S-Acid	$[\alpha]_D^{20}$ (CH ₂ Cl ₂)	Yield (%)	
L-N-ethoxycarbonylisoleucine	1 COSH NHCO ₂ Et	-10.6(c, 4.0)	91	
DL-N-ethoxycarbonylisoleucine	2 COSH NHCO ₂ Et	_	97	
L-N-benzyloxycarbonylphenylalanine	3ª Ph COSH	-10.2(c, 4.0)	90	
L-N-ethoxycarbonylproline	4 N COSH	-88.0(c, 4.0)	96	
L-N-ethoxycarbonylalanine	5 NHCO ₂ Et	-15.4 (c, 2.7)	100	
L-N-ethoxycarbonylmethionine	6 MeS COSH	-17.8(c, 4.8)	89	
L-N-tert-butyloxycarbonylphenylalanine	Ph COSH	-21.8(c, 4.5)	90	

 $^{^{}a}$ Z = benzyloxycarbonyl.

Table 2 α -Keto azides obtained from α -diazoketones^a

α-Diazoketone	α- K eto azide	$\left[\alpha\right]_{D}^{20}\left(CH_{2}Cl_{2}\right)$	Yield (%) ^b
10 NPhth	14 NPhth	-57.8 (c, 5.2)	71
11 $Ph \xrightarrow{NPhth}_{O} N_2$	15 Ph NPhth	-13.2(c, 4.0)	70
12 NHZ N ₂	16 , NHZ N ₃	+15.8 (c, 1.5)	68
13 NPhth N2	17 NPhth N3	-24.4 (c, 5.3)	94

^a Phth = phthaloyl; Z = benzyloxycarbonyl. ^b Overall yields for both reactions.

without detectable amounts of racemization was established by comparing the ¹H NMR spectrum of the amide obtained from benzyl azide and thio S-acid 1 with that obtained with the DL-counterpart of the thio S-acid 2, which revealed that the former amide constituted a single diastereoisomer.

Our principal interest in exploring the use of these thio S-acids in reductive acylation was the possibility of using as substrates α -keto azides derived also from natural amino acids, a combination capable of producing novel peptide mimics. Such keto azides are accessible from α -amino acids via diazoketones in the sequence shown in eqn. (2).

The 10–13 series of N-protected α-diazoketones in Table 2 were prepared from the appropriate N-protected L-amino

acids via acyl chloride or mixed anhydride formation, followed by exposure to ethereal diazomethane. Treatment of the α -diazoketones with hydrogen bromide (1 equiv.) in dry diethyl ether at room temperature furnished the α -bromo ketones and exposure of the latter to sodium azide in dry dimethyl sulfoxide completed the synthesis of the α -keto azides 14–17 (Table 2), both stages proceeding in excellent yields. 1H NMR chiral shift studies employing [Eu(hfc)₃] {tris [3-heptafluoropropylhydroxymethylene)-(+)-camphorato]europium(III)} established that these azides were formed free of racemization.

Table 3 Amides obtained from selected thio S-acids (Table 1) and α -keto azides (Table 2)^a

Thio S-acid	α-Keto azide	Amide	$[\alpha]_D^{20}(CH_2Cl_2)$	Yield (%)
1	14	18 NPhth NHCO ₂ Et	-56.4 (c, 2.4)	72
4	15	19 Ph NPhth O CO ₂ Et	-78.4(c, 3.8)	76
7	16	20 NHZ NHBoc Ph	-2.1(c, 3.2)	72
4	14	21 NPhth O CO ₂ Et	-80.9(c, 4.8)	74

^a Phth = phthaloyl; Z = benzyloxycarbonyl.

The availability of several thio S-acids and α -keto azides opens up the way to a variety of peptide-like structures. Not all of the many possible combinations implicit in Tables 1 and 2 have been tested experimentally, but preliminary studies (Table 3) suggest that reductive acylation is a quite general process, proceeding smoothly under the conditions described above for benzyl azide. For example, thio S-acid 1 combined with keto azide 14 to afford amide 18, m.p. 145–146 °C, in 72% yield, while thio S-acid 7 reductively acylated the isoleucine derived azide 16 to afford amide 20, m.p. 150-151 °C. Similarly, the 4 + 15 and 4 + 14 combinations in Table 3 furnished amides 19 and 20, respectively. Yields refer to analytically pure products whose structures are fully supported by ¹H NMR spectral data. The extension of this process to reductive acylation of peptide-derived azides is under study.

We thank Glaxo Group Research Ltd. for a postgraduate studentship to M. B. O'S.

Received, 15th September 1992; Com. 2/04942B

References

- D. Yamashiro and J. Blake, Int. J. Pept. Protein Res., 1981, 18, 383;
 Y. V. Mitin and N. P. Zapevalova, Int. J. Pept. Protein Res., 1990, 35, 352.
- 2 T. H. Jensen, M. H. Jakobsen, C. E. Olsen and A. Holm, *Tetrahedron Lett.*, 1991, **51**, 7617.
- 3 T. Rosen, J. M. Lico and D. T. W. Chu, J. Org. Chem., 1988, 53, 1580
- 4 G. W. Anderson, J. E. Zimmerman and E. M. Callaghan, J. Am. Chem. Soc., 1964, 86, 1839.